
EMP: Executable Motion Prior for Upper-body Motion Imitation when
Humanoid Robot Standing

Abstract— Achieving stable and accurate imitation of human
motions by humanoid robots remains challenging, particularly
for tasks requiring firmly standing while executing diverse upper-
body movements. While reinforcement learning (RL) offers
promise for whole-body motion control, directly tracking upper-
body motions often lead to the difficulty in resolving the conflict
between stability and similarity. In this paper, we present a RL
framework for humanoid robots to stably imitate diverse upper-
body motions while standing. Our approach employs a motion
retargeting network to translate human motions into humanoid
targets. A decoupled RL policy is then trained to control the
lower body for standing while tracking upper-body motions.
However, large-amplitude motions outside training data may lead
to loss of balance. To address this, we introduce an Executable
Motion Prior (EMP) network that adjusts potentially unstable
actions into more feasible motions while minimizing changes to
the intended movement amplitude, enhancing standing robust-
ness without retraining. We evaluate our framework through
simulation and real-world tests, demonstrating its practical
applicability. Project page.

I. INTRODUCTION

The humanoid form enables humanoid robots to better adapt
to human environments, tools, and interactions. Our goal is to
empower humanoid robots to execute human-like movements,
facilitating a more accurate mapping of human motions onto
the robots. This capability allows them to efficiently acquire
human motion skills, thereby establishing a foundation for
carrying out subsequent tasks.

However, significant challenges persist in the practical im-
plementation of humanoid robots that mimic human motions.
The intricate dynamic characteristics of humanoid robots,
combined with their high-dimensional state and action spaces,
make motion control particularly complex. Although model-
based controllers have demonstrated impressive results in
whole-body motion imitation [1], [2], [3], the computational
demands of complex dynamic models confine these methods
to simplified representations, thereby limiting their scalability
for dynamic motions.

Recently, reinforcement learning (RL) methods have gained
traction in the field of humanoid robotics. Initially, RL was
utilized within the graphics community to generate humanoid
motions from human motion data for animated characters
[4], [5], [6]. Furthermore, RL controllers have been devel-
oped for humanoid robot whole-body control [7], [8], [9],
[10]. These whole-body controllers integrate imitation learning
and reinforcement learning techniques to achieve human-like
motion imitation, such as punching and dancing. However,
in practical applications, beyond these whole-body tracking
tasks, numerous tasks require stable imitation of standing
motions. The current mainstream approaches are illustrated

Whole-Body Policy

Upper body 
motion target RL Policy PD ControllerWhole-body action RobotTorque

Decoupled Policy

Upper body 
motion target

RL Policy
PD Controller Robot

Torque

Lower-body action

Upper-body action

Our Method

Upper body 
motion target

RL Policy

EMP Net

PD Controller

Lower-body action

Upper-body action

Robot
Torque

Fig. 1: Different Motion Imitation Framework. (a) Decoupled
Policy, such as PMP [12], only generates lower-body actions
and executes upper-body target straightly. (b) Whole-Body
Policy, like HumanPlus [8] and Exbody [7], controls whole
body joints to imitate upper-body motion target. (c) Our
method introduces an executable motion prior to optimize
upper-body motion target while RL policy provides lower-
body actions.

in Figure 1. When we apply whole-body tracking methods,
we observe that when joints are entirely controlled by the RL
policy, vibrations and deviations can occur in the base and
upper-body actions. Additionally, some whole-body tracking
algorithms may experience stability issues when confronted
with motions outside training data [7], [11]. On the other hand,
while implementing a decoupled policy, a conflict between
robot stability and motion similarity may occur. Directly
executing upper-body actions can cause the robot’s limited
control capabilities to exceed the RL policy’s constraints,
leading to a loss of balance.

Our goal is to develop a humanoid robot upper-body motion
imitation system capable of maintaining stable standing while
executing a variety of upper-body motions and the system can
flexibly adapt to motions that lie outside the training data. Our
framework is depicted in Figure 2.

Initially, we employ the method described in [13] to
construct a graph convolution network that retargets human
motions into humanoid movements, generating a comprehen-
sive motion dataset. Subsequently, we train a decoupled RL
policy for upper-body motion imitation using these retargeted
motions. However, due to the heavy upper limbs, the control
capability of the RL policy is restricted, which may result in
stability issues when encountering broad movements.

When humans perform upper-body motions, they can rec-
ognize potential dangers and make timely adjustments to
their movements. Inspired by this, we propose an Executable
Motion Prior (EMP) that modifies the input target upper-
body motions based on the robot’s current state. This approach
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Fig. 2: Overview of our framework. Motion Retargeting (section IV): We train a graph convolution retargeting network to
convert human motions msource to humanoid joint actions mtarget as motion goal for imitation. RL Policy (section V):
We train an upper-body imitation policy for the humanoid to track the upper-body motion goal gt while keeping balance.
Executable Motion Prior (section VI): We use a AE-based network to adjust the goal motion based on the current state ŝt,
improving stability.

enhances standing stability while minimizing alterations to the
motion amplitude. Utilizing the dataset obtained from motion
retargeting and the trained RL controller, we train an EMP
network. This network transforms unstable upper-body actions
into stable ones by simultaneously encoding the robot’s current
state and action objectives into a latent space and decoding
them into new, more reasonable action objectives, functioning
as an action optimization module before RL controller. Mean-
while, since variables in the simulator cannot obtain gradients,
we train a world model to simulate the state transitions of the
simulator, thereby achieving gradient backpropagation during
EMP training. Finally we deploy this framework in real-world
humanoid robots.

Our contributions are as follows:

1) An RL based framework for humanoid robot imitating
upper-body motion, which includes a motion retargeting
network to transfer human motions to humanoid motions
and an RL policy to control the robot standing stably
while tracking any upper-body motions;

2) An executable motion prior for the RL imitation policy
system that adjusts target motions based on the hu-
manoid’s current state, enhancing stability while mini-
mizing changes in motion amplitude;

3) A world model to simulate the state transition process
of the environment to enable efficient learning of motion
prior through gradient backpropagation.

4) Sim-to-real transfer of our system that demonstrates its
effectiveness in two humanoid robots.

II. RELATED WORKS

A. Motion Retargeting

Motion retargeting facilitates the transfer of motion data
from a source character to a target character. In the context of
animation, both optimization-based methods [14] and learning-
based methods [13], [15] are employed for motion transfer
between animated characters. Learning-based methods tend to
yield more efficient results and can facilitate motion transfer
across different skeletal structures [13], [16].

In human-robot motion retargeting, Delhaisse et al. [17]
use shared latent variable models to retarget motions between
different humanoids. Ayusawa et al. [18] reconstruct human
motion within the physical constraints imposed by humanoid
dynamics and offer a precise morphing function for different
human body dimensions. Zhang et al. [19] utilize latent
optimization to train a retargeting network, which achieves
similarity and rapid adaptability at the kinematic level. These
retargeting methods addressed the issue of human motion
imitation at the kinematic level but lack consideration of
dynamics.

B. Reinforcement Learning for Humanoid Motion Imitation

To tackle the problems associated with dynamics, re-
searchers propose various control algorithm to enable the
humanoid robot to imitate human motions.

Traditional methods, such as model predictive control
(MPC), use model-based optimization methods to minimize
tracking errors under stability and contact constraints [20].
However, due to the high computational burden, the humanoid



model is usually simplified [21], [22], which limits the accu-
racy of imitation.

Reinforcement Learning (RL) controllers provide an al-
ternative solution. Before RL-based controllers were used
in real-world humanoids, they were often used in physics-
based animation control [4], [5], [23]. Nevertheless, the hu-
manoid avatars usually have less restrictions on joint positions,
torques, and sometimes with additional auxiliary force [24].

On the other hand, realistic humanoids have complex dy-
namic models, and it is difficult to obtain privileged states,
such as base velocity and height, from built-in sensors [7].
This makes it impossible to directly transfer RL models
used for animated characters to physical humanoids. Li et
al. [25] proposed an end-to-end RL approach and used task
randomization to build a robust dynamic locomotion controller
for bipedal robots. Siekmann et al. [26] use stair-like ter-
rain randomization to build an RL controller for humanoid
traversing stair-like terrain. Cheng et al. [7] train a whole-
body humanoid controller with a large-scale motion dataset.
He et al. [10] use a privileged policy to select an executable
motion dataset, which helps training a robust RL policy for
sim-to-real deployment. Fu et al. [8] train a task-agnostic
low-level policy to track retargeted humanoid poses. Lu et
al. [12] proposed a CVAE-based motion prior to enhance the
robustness of controller.

III. OVERVIEW

Our method focuses on building a stable standing control
system for a humanoid robot capable of adapting to various
upper limb movements, which can also accommodate motions
outside of the training data. The framework is structured into
three segments: Motion Retargeting, RL Policy and Executable
Motion Prior (EMP), as illustrated in Figure 2.

The motion retargeting network offers upper-body motion
target to the control policy. We decouple the whole-body
control policy into πlower and πupper. πlower is an RL-based
policy which generates lower-body actions from propriocep-
tion state to keep the humanoid robot standing in balance while
tracking upper-body motions. The upper-body policy πupper
is executable motion prior (EMP) network, which adapts the
upper-body goals based on the current status of the robot.

A. Motion Retargeting

The motion retargeting network is responsible for mapping
the motions from the human motion dataset to robot actions,
which are used for training in reinforcement learning and the
EMP network.

Prior work [13] has achieved cross-skeleton motion retar-
geting between animated characters with a graph network.
We develop a network for motion retargeting from human
to humanoid. Using networks for motion retargeting offers
good real-time performance and generalization capabilities.
The details of the retargeting network is elaborated upon in
section IV.

B. RL Control Policy

With the robot upper-body motion dataset retargeted from
human motions, we incorporate upper-body movements into

the RL training process to enable the final policy πlower to
adapt to interference from different motions. The specifics of
the training are discussed in section V.

C. Executable Motion Prior

When the amplitude of upper-body motion targets exceeds
the range that the RL controller can handle, the entire system
is at risk of losing balance. In this instance, the EMP network
makes adjustments to the upper-body actions based on the
present state of the robot. EMP network is a network with
an encoder-decoder architecture. Inspired by the framework
of ControlVAE [27], Figure 3 displays the framework for
the EMP algorithm, categorized into two processes: training
and generation. Throughout the training process, we employ
a world model to simulate state transitions, allowing us to
predict the future states of the robot. Then the EMP network
can be trained based on feedback derived from future states.
During the generation process, With the trained prior distri-
bution, the EMP network generates the executable target for
humanoid from source target and state.

The more details are explained in section VI.

IV. RETARGETING HUMAN MOTION TO HUMANOIDS

A. Retargeting Network Architecture

Figure 2 illustrates the structure of our retargeting network.
We regard the upper-body skeleton of the humanoid and the
human as a graph. Referring to the framework of VQ-VAE
[28], our network consists of a motion encoder, a vq-codebook
layer and a motion decoder.

The motion encoder fe embeds the source motion from
human. The source motion is represented as the positions of
key nodes QA ∈ RNA×3 and the features of edges EA. After
passing through the graph convolutional layers, the source
motion features are encoded into the latent space features :
zA = fe(QA,EA). A transformation net ftf converts the
latent features of input skeleton A into the latent features of
output skeleton B: zB = ftf (zA). Then the codebook layer
chooses the nearest element of the latent embedding vectors:

ze = ek where k = argmin
j
∥zB − ej∥2 (1)

The motion decoder fd generates the target motion QB ∈
RNB (represented by joint angles) with latent embedding
vector ze and edge features EB : QB = fd(ze,EB).

The key nodes are waist, torso, shoulder, elbow and wrist.

B. Training Loss

Combined with the method in [29], the training loss of our
retargeting network is composed of five terms: end effector
loss Lee, orientation loss Lori, elbow loss Lelb, embedding
loss Lemb and commitment loss Lcom. We list the losses
in Tab I, where p and p̂ mean the node position of human
and humanoid respectively, R and R̂ mean the end effector
(namely wrist) rotation matrix, sg() means stop gradient.



TABLE I
TRAINING LOSS FOR RETARGETING NETWORK

Term Expression Weight

Lee ∥
pee − pelb

∥pee − pelb∥2
−

p̂ee − p̂elb

∥p̂ee − p̂elb∥2
∥22 100

Lori ∥R− R̂∥22 100

Lelb ∥
pelb − psho

∥pelb − psho∥2
−

p̂elb − p̂sho

∥p̂elb − p̂sho∥2
∥22 100

Lemb ∥sg(ze)− e∥22 10000

Lcom 0.25∥ze − sg(e)∥22 10000

TABLE II
REWARDS EXPRESSIONS AND WEIGHTS

Term Expression Weight
Regularization

Base orientation exp (−10∥rpyxy
t ∥1) 3.0

Projected gravity exp (−20∥pgxy
t ∥2) 3.0

Base height exp (−100|ht − href|) 0.2
Base linear velocity exp (−10∥vt∥22) 0.75
Base angular velocity exp (−20∥ωt∥2) 0.75
Base acceleration exp (−3∥vt − vt−1∥2) 0.2

Leg DoF position exp (−100∥qleg
t − qleg,ref∥2) 1.0

Feet contact 1(F z
feet ⩾ 5) 0.5

Feet slip 1(F z
feet ⩾ 5)×

√
∥vfeet

t ∥2 0.2

Energy
Action range ∥at∥1 -0.075
Action rate ∥at − at−1∥22 -1.5
Action acceleration ∥at + at−2 − 2at−1∥22 -1.5
Torques ∥τt∥22 -1e-5
Dof velocity ∥q̇t∥22 -1e-4
Dof acceleration ∥q̈t∥22 -1e-7

V. RL CONTROL POLICY TRAINING FOR HUMANOID
UPPER-BODY IMITATION

A. State Space

We consider our RL control policy as a goal-conditioned
policy π : G× S −→ A, where G is goal space that indicates
the upper-body motion target, S is the observation space and
A is the action space for lower-body joints.

We define goal state as gt ≜ qtarget ∈ R15, where
qtarget represents the target joint position of upper-body joints,
including two 7-dof arms and one 1-dof waist. The action
is denoted as at ∈ R12 . We define our observation state
as st ≜ [qt,at−1, rpyt, gt], where qt ∈ R27 indicates the
joint position and rpyt ∈ R3 is the euler angle of robot
base. We combine states of last T frames together as St =
{st−T :t} ∈ RT×65 to utilize history message. We set T = 15
in experiments. The action space consists of 12-dim joint
position targets (two 6-dof legs). The joint actions will be
converted to joint torque by a PD controller.

B. Reward Design

The rewards are detailed in Tab II, where href is reference
height of base, qleg,ref is reference joint positions of legs.

Our policy focuses on upper-body motion imitation while
standing, so we just set vref

t = 0 and ωref
t = 0.

To improve training efficiency, we reset training process
when the projected gravity on x or y axis exceeds 0.7.
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Fig. 3: Framework of our EMP System. EMP network gener-
ates optimized upper-body motion targets conditioned on the
state of the robot. The world model learns the state transition
model from the simulator for gradient backpropagation.

VI. EXECUTABLE MOTION PRIOR

A. Network Architecture

The EMP network consists of an encoder and a decoder,
showed in Figure 2. The encoder is composed of 3 sub-
networks: a state encoder fs, a target encoder ft and a fusion
network fψ . The state encoder and target encoder encode
the state and the target into the latent space variable z1, z2,
respectively.

z1, z2 = fs(st), ft(gt) (2)

Then the fusion network encodes two variables into a
single latent space vector z = fψ(z1, z2), which follows a
standard normal distribution z ∼ N (0, 1) and then the decoder
generates a new target for the humanoid. Then the EMP can
be described as:

ĝt = fθ(st, gt) (3)

where θ is the learnable variable of EMP net. The encoder
and decoder nets are both MLP networks.

B. Training Process

The training process consists of two parts: world model fw
training and EMP training.
World Model Training. Due to the inability to obtain gra-
dients from the robot state information in the simulation, we
use a world model to simulate the state transition process of
the humanoid robot environment. The world model predicts
the next state of the humanoid robot depending on the current
state and action:

ŝt+1 = fw(st,at) (4)

where w is the learnable variable of world model. Then we
have world model prediction loss:

Lpre = ∥st+1 − ŝt+1∥22 (5)



where st+1 is the state given by the simulator, namely isaac-
gym here and ŝt+1 is the prediction of the world model. The
state here is defined the same as section V-A.
EMP Training. While the robot is losing its balance, the
following situations usually occur: (1) The center of gravity is
projected away from the support surface; (2) The robot’s torso
is no longer oriented vertically upwards. Therefore we train
the network to avoid these situations. Meanwhile, the self-
collision and smoothness of the motion can also influence the
balance.

The training process of EMP is illustrated in Figure 3. We
have the following losses:
i) Reconstruction Loss. The reconstruction loss Lrec encour-
ages the generated motion ĝt to be as identical to the source
target gt. We define

Lrec = ∥gt − ĝt∥22 (6)

ii) Centroid Loss. The centroid loss Lcen prompts the centroid
of humanoid to stay in the range of support surface under foot.
Lcen is defined as

Lcen = min{exp(−7(0.03− d)), 10} − 1 (7)

where d is the distance between the center of the foot support
surface and the projection of the centroid onto the ground.
iii) Orientation Loss. The orientation loss Lori promotes the
humanoid’s base to stay upright, which can improve the
stability of the humanoid. Then Lori is defined as

Lori = exp(−∥p̂gxyt+1∥22)− 1 (8)

where p̂g
xy
t+1 is the projected gravity vector, which is calcu-

lated from r̂py
xy
t+1 predicted by the world model.

iv) Collision Loss. The collision loss Lcol encourages the
motion to reduce self-collision of the humanoid. We simplify
the links that may collide into a spherical model, and calculate
the distance between the links. We define

Lcol =
∑
i,j∈J

exp[−2(0.08− ∥pi − pj∥2)] (9)

where J is the set of the links that may collide with each
other, we define J = {torso, hand, sacrum, thigh} here. pi
and pj mean the coordinate of the link centers, which can be
calculated with forward kinematics (FK).
v) Smoothness Loss. The smoothness loss Lsmo promotes the
motion to be smooth and reduces the occurrence of motion
mutations. Lsmo is defined as

Lsmo = ∥ĝt − ĝt−1∥22 + 0.2∥ĝt + ĝt−2 − 2ĝt−1∥22 (10)

vi) Regularization Loss. The regularization loss Lreg encour-
ages the latent variable to conform to standard Gaussian
distribution, similar to method in [19]. Lreg is defined as

Lreg = ∥z∥22 (11)

where z is the latent variable.
Finally we get overall loss for EMP training:

L =λrecLrec + λoriLori + λcolLcol

+ λcenLcen + λsmoLsmo + λregLreg (12)

We set λrec = 20, λori = 10, λcol = 1, λcen = 10, λsmo =
100, λreg = 1 here. The overall training process is shown in
Algorithm 1.

Algorithm 1 Training process of EMP

1: for number of training epochs do:
2: for batch of motions in training set do:
3: Reset simulation environment;
4: for t← 0 to T − 1 do:
5: Sample at = π(st, gt);
6: Sample st+1 and ŝt+1 = fw(st,at);
7: Update world model fw with ∇wLpre;
8: end for
9: Reset simulation environment;

10: for t← 0 to T − 1 do:
11: Sample ĝt = fθ(st, gt);
12: Sample at = π(st, ĝt);
13: Sample ŝt+1 = fw(st,at);
14: Update EMP fθ with ∇θL;
15: end for
16: end for
17: end for

VII. EXPERIMENTS

A. Experiment Setup

Hardware Platform. The main humanoid platform we use is
a full-sized robot (1.65m, 60kg) which feature 27 degrees of
freedom, including two 7-dof arms (about 6kg for one arm,
which brings higher load capacity and control difficulty), two
6-dof legs and one 1-dof in waist.
Implementation Details. The encoder and decoder of retar-
geting network are both graph convolutional neural networks
with three graph convolutional layers, and the hidden sizes
are [16,32,64] and [66,32,16], respectively. The codebook of
retargeting network has 2048 latent space vectors, each with
a dimensionality of 64. The world model is implemented as a
multi-layer perceptrons (MLP) with hidden size of [1024,512].
The state encoder and target encoder of EMP network are
MLPs with hidden sizes of [1024,1024], and the fusion net-
work and decoder are MLPs with hidden sizes of [2048,2048].
The RL training is conducted on an NVIDIA A800 (80GB)
GPU and takes about 6 hours with a learning rate of 1e-3 in
Isaac Gym [30] with domain randomization [31]. The EMP
network is trained on an NVIDIA RTX4060 GPU for 5 hours.
Motion Dataset. We utilize our retargeting network to con-
struct our humanoid motion dataset, selecting the GRAB
dataset [32] from the AMASS dataset [33] as our source. Our
network is trained on this dataset, and we use the retargeting
results to train our reinforcement learning policy. To address
the issue of varying motion lengths, we segment these motions
into smaller clips, each consisting of 60 frames, and then
reconnect them. For EMP training, we further divide these
motions into segments of 200 frames each, which facilitates
our batch collection process.
EMP Training. We train our Executable motion prior (EMP)
on retargeted GRAB dataset, which we randomly divided into
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Fig. 4: Simulation experiments (left motion: spheremedium pass, right motion: lightbulb screw). The results show that while
executing dangerous motions, EMP network will optimize the unexecutable motion and keep the robot standing stably.

a training set (1,070 motions) and a test set (270 motions).
We train the world model and EMP with Adam [34] optimizer
with an initial learning rate of 1e-3.
Baselines. We consider the following baselines:

i) Privileged Policy. Referring to the settings in [10], the
observation space for the privileged policy input includes
all first-hand robot state, and no noise or domain random-
ization is added during training. The privileged policy
demonstrates the upper limit of the robot’s mobility.

ii) Whole-Body Policy. Instead of only controlling lower-
body joints, the whole-body policy controls all 27 joints.
We train this policy based on the rewards and methods
in Exbody [7] and HumanPlus [8]. We use this policy to
track upper-body motions and keep lower-body joints in
default angles.

iii) Decoupled Imitation Policy. Our main RL policy, which
controls lower-body joints to keep balance while tracking
upper-body motions.

iv) Decoupled Imitation Policy with Predictive Motion
Prior (PMP) [12]. We add PMP features into the ob-
servation state of decoupled policy.

v) Decoupled Imitation Policy with EMP. Our full system,
RL policy with executable motion prior.

vi) EMP when Danger. Enable EMP only when regloss of
the latent space exceeds 0.04. The regloss reflects the
degree of the motion deviation from prior distribution.

Metrics. The metrics are as follows:
- Success Rate (SUC). We define imitation failed when

termination conditions in section ?? are triggered.
- Mean upper-joint position reward (MJP). We de-

fine upper-body joint position reward as rjp =
exp (−∥qt − gt∥2).

- Mean self-collision reward (MSC). Self-collision often
happens while tracking motions, which will seriously

disturb the balance control of the robots. We use link
contact force to evaluate this metric: rcol = −∥ft∥2.
We only consider the contact between these links: torso,
thigh, hand and sacrum.

- Mean Base Velocity reward (MBV).
- Mean Base Acceleration reward (MBA).
- Mean Base Orientation reward (MBO).
- Mean upper-body action Smoothness (MUS). We cal-

culate the velocity rate of upper-body joints to evaluate
smoothness: rsmo = ∥q̇t − q̇t−1∥22

Fig. 5: The upper motion (lightbulb screw) of whole-body
policy and EMP. The whole-body policy brings significant
vibration to upper-body motions.

B. Simulation Experiments

The results of simulation experiments are summarized in
Tab III. The results reveal that our EMP methods outperform
other baselines. Compared with Decoupled Policy, the Whole-
Body Policy has a much higher success rate. However, it



TABLE III
EXPERIMENT RESULTS

Baselines
Metrics

SUC ↑ MJP ↑ MSC ↓ MBV ↑ MBA ↑ MBO ↑ MUS ↓
Privileged Policy 97.0% 0.8192 0.3816 0.7727 0.7158 0.7702 2.4420

Whole-Body Policy 100% 0.7915 0.3915 0.7153 0.6801 0.5204 7.6708
Decoupled Policy 89.6% 0.8296 0.3602 0.7813 0.7513 0.6571 2.2486
PMP 96.7% 0.8192 0.3505 0.7423 0.7150 0.6871 2.2708
EMP when Danger 98.1% 0.8233 0.1617 0.8029 0.7571 0.6868 2.3700
EMP (Ours) 98.5% 0.8230 0.1423 0.7997 0.7588 0.6892 2.3678

performs poor in other metrics, especially upper-body mo-
tion smoothness. The PMP baseline has achieved a certain
improvement in base decoupled policy, but its effectiveness is
weaker than that of EMP.

The EMP network optimizes upper-body motion while
minimizing deviations as much as possible, thereby improving
control stability. The acceleration, velocity and orientation
stability of the base are improved remarkably and the collision
is reduced while the joint position error is slightly increased.

Figure 4 shows some simulation results. While the upper-
body motions are executable, our framework maintains con-
sistency with the initial motions. Once the amplitude of the
motion exceeds the control capability of the controller, the
EMP will optimize the motion to keep the overall robot stable
and avoid falling situations. We analyze the upper-body motion
variation curve in Figure 5. We can see that while performing
upper-body motions, whole-body policy exhibits noticeable
oscillations, especially in wrist joints.

TABLE IV
ABLATION STUDY

Methods
SUC
↑

MJP
↑

MSC
↓

MBV
↑

MBA
↑

MBO
↑

MUS
↓

EMP w/o smoothness 27.0% 0.637 0.211 0.702 0.591 0.555 5.434
EMP w/o orientation 2.6% 0.327 3.982 0.470 0.283 0.375 12.82
EMP w/o centroid 10.7% 0.396 2.850 0.531 0.232 0.422 11.00
Full EMP 98.5% 0.823 0.142 0.800 0.759 0.689 2.368

TABLE V
CROSS EMBODIMENT VALIDATION

Baselines
SUC
↑

MJP
↑

MSC
↓

MBV
↑

MBA
↑

MBO
↑

MUS
↓

Privileged Policy 99.3% 0.840 1.317 0.787 0.284 0.702 3.642

Whole-body Policy 99.3% 0.773 3.354 0.678 0.634 0.168 4.253
Decoupled Policy 90.0% 0.841 1.748 0.792 0.381 0.727 1.604
EMP when Danger 95.9% 0.835 0.799 0.797 0.371 0.742 1.691
EMP (Ours) 97.8% 0.861 0.129 0.807 0.394 0.754 1.435

C. Ablation Study

To validate the impact of different losses on the effective-
ness of EMP, we conducted ablation experiments on smooth-
ness loss, orientation loss and centroid loss. As illustrated in
Tab IV, the results of the ablation experiments indicate that
all three loss functions play an important role in the training

Fig. 6: Real-world experiments. The robot is imitating motions
from dataset while standing.

of the EMP network. The absence of these loss functions not
only affects the directly related metrics but also impacts the
overall stability of the system. In contrast, the impact of the
smoothness loss on the system is smaller than that of the other
two losses.

D. Real-world Experiments

We test our system on real-world humanoid robot platform.
All the proprioception of the robot comes from built-in sen-
sors. Our RL policy and EMP run at 50Hz. The PD controller
runs at 1kHz. We test several human motions from AMASS
dataset in Figure 6.

E. Cross Embodiment Validation

We retrained and deployed our system on another humanoid
platform, which also features two 7-dof arms, two 6-dof legs
and one 1-dof in waist.

The results are shown in Figure 7, and the metrics of
partial baselines are shown in Table V. We find that EMP
has advantages in the vast majority of indicators, but it lags
behind Whole-body Policy significantly in terms of MBA. The
main reason is that Whole-body Policy makes sacrifices in
tracking the waist joint, resulting in lower angular acceleration
in the yaw direction. Experiments across multiple platforms
demonstrate the adaptability and portability of our framework.



(1) No EMP

(2) EMP

Source Motion

Fig. 7: Simulation experiment of cross embodiment validation
VIII. CONCLUSIONS AND FUTURE WORK

In this work, we introduce a framework that enables the
humanoid to imitate upper-body motions retargeted from hu-
man motions. We train a retargeting network from a humanoid
motion dataset and an upper-body imitation RL policy to
control the humanoid to keep balance while tracking motions.
Then our approach utilizes executable motion prior before RL
controller to transform difficult motions into executable targets
that fit the humanoid control ability. Through simulations
and real-world tests, we validated the effectiveness of our
framework. However, we have not realized whole-body motion
imitation due to high DoF and complex dynamics of the full-
sized humanoid robot. Meanwhile, joint limitations of the
robot result in a significant disparity between the retargeted
motions and the source movements. We hope to address
these limitations in the future to build a whole-body motion
imitation system.
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